To systematically review the use of mathematical modelling to predict real world effectiveness from RCT efficacy data, range from statistical evidence synthesis to mathematical prediction models.

OBJECTIVE
- To systematically review the use of mathematical modelling to predict real world effectiveness from RCT efficacy data

METHODS

In- and exclusion criteria
- Description of a mathematical model in the field of comparative effectiveness research
- Studies with a methodological focus
- Applications for medical interventions
 - Infectious diseases
 - No prediction of effectiveness based on efficacy

Data sources
EMBASE, MEDLINE, JRSS, HTA websites, reference lists of eligible and other relevant papers found in the search

RESULTS

Four broad model types identified

 - Discrete health states, transition between states
 - Simulation on cohort level or on individual level (microsimulation models)
 - Markovian assumption often imposed

2. **Discrete event simulation models** (Guo et al. 2009)
 - Events instead of states
 - Not restricted to discrete states
 - Algorithmic procedure

3. **Mechanistic models** (Schultz et al. 2012)
 - Ordinary differential equations
 - Describe whole physiology of a patient

 - Survival analysis

Examples of predictive steps identified
- Across population characteristics
 - Prediction of occurrence of stroke and death for a trial-excluded patient population
 - Prediction of drug response in a genetically characterized patient subgroup
- Over time
 - Prediction of long-term survival outcomes of anti-diabetic treatment

Disease areas
- Cardiovascular disease (N=6)
- Oncology (N=1)
- Neurosciences (N=1)

DISCUSSION

- Limitations of identified models: lack of external validation, Markovian assumption
- Few included papers: mathematical models very common e.g. in disease progression modelling or for cost-effectiveness analysis, but rarely used to bridge efficacy-effectiveness gap
- This review complements existing literature reviews on specific modelling techniques by adding the focus on bridging the gap from efficacy to effectiveness via mathematical models

REFERENCES

Clarke, P.M. et al., 2004. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia 47, 1747–1759.

Funding
The work leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115546, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies in kind contribution.

Contact
Noemi Hummel, Institute of Social and Preventive Medicine Bern, Switzerland
Email: nhummel@ispm.unibe.ch